DEDICATÉ TIEMPO

El tiempo (del latín tempus) es una magnitud física con la que se mide la duración o separación de acontecimientos.

El tiempo permite ordenar los sucesos en secuencias, estableciendo un pasado, un futuro y un tercer conjunto de eventos ni pasados ni futuros respecto a otro.

En mecánica clásica a esta tercera clase se llama «presente» y está formada por eventos simultáneos a uno en particular.

En mecánica relativista el concepto de tiempo es más complejo: los hechos simultáneos («presente») son relativos al observador, salvo que se produzcan en el mismo lugar del espacio; por ejemplo, un choque entre dos partículas.

Su unidad básica en el Sistema Internacional es el segundo, cuyo símbolo es s (debido a que es un símbolo y no una abreviatura, no se debe escribir con mayúscula, ni se escribe como «seg», «sg» o «sec», ni agregando un punto posterior).

El tiempo ha sido durante mucho tiempo un importante tema de estudio en la religión, la filosofía y la ciencia, pero definirlo de manera aplicable a todos los campos sin circularidad ha eludido sistemáticamente a los estudiosos.1​No obstante, campos tan diversos como los negocios, la industria, los deportes, las ciencias y las artes escénicas incorporan alguna noción de tiempo en sus respectivos sistemas de medición.​

El tiempo en física se define operativamente como «lo que lee un reloj«.​

La naturaleza física del tiempo es abordada por la relatividad general con respecto a los eventos en el espacio-tiempo. Ejemplos de eventos son la colisión de dos partículas, la explosión de una supernova o la llegada de un cohete. A cada suceso se le pueden asignar cuatro números que representan su tiempo y posición (las coordenadas del suceso). Sin embargo, los valores numéricos son diferentes para los distintos observadores. En la relatividad general, la pregunta de qué hora es ahora sólo tiene sentido en relación con un observador concreto. La distancia y el tiempo están íntimamente relacionados y el tiempo necesario para que la luz recorra una distancia específica es el mismo para todos los observadores, como demostró públicamente por primera vez el experimento de Michelson y Morley. La relatividad general no aborda la naturaleza del tiempo para intervalos extremadamente pequeños en los que la mecánica cuántica es válida. En este momento, no existe una teoría generalmente aceptada de la relatividad general cuántica. 

El tiempo es una de las siete cantidades físicas fundamentales tanto en el Sistema Internacional de Unidades (SI) como en el Sistema Internacional de Cantidades. La unidad de tiempo base del SI es el segundo. El tiempo se utiliza para definir otras cantidades – como la velocidad – por lo que definir el tiempo en términos de dichas cantidades daría lugar a una circularidad de definición.9​ Una definición operativa del tiempo, en la que se dice que la observación de un cierto número de repeticiones de uno u otro evento cíclico estándar (como el paso de un péndulo de movimiento libre) constituye una unidad estándar como el segundo, es muy útil tanto en la realización de experimentos avanzados como en los asuntos cotidianos de la vida. Para describir las observaciones de un acontecimiento, se suele anotar una ubicación (posición en el espacio) y un tiempo.

La definición operativa del tiempo no aborda cuál es su naturaleza fundamental. No aborda por qué los acontecimientos pueden ocurrir hacia adelante y hacia atrás en el espacio, mientras que los acontecimientos sólo ocurren en el avance del tiempo. Las investigaciones sobre la relación entre el espacio y el tiempo llevaron a los físicos a definir el continuo espacio-tiempo. La relatividad general es el marco principal para entender cómo funciona el espaciotiempo. A través de los avances en las investigaciones tanto teóricas como experimentales del espacio-tiempo, se ha demostrado que el tiempo puede distorsionarse y dilatarse, particularmente en los bordes de los agujeros negros.

La medición del tiempo ha ocupado a los científicos y a los tecnólogos de la ingeniería, y fue una motivación primordial en la navegación y la astronomía. Los eventos periódicos y el movimiento periódico han servido durante mucho tiempo como estándares para las unidades de tiempo. Algunos ejemplos son el movimiento aparente del sol en el cielo, las fases de la luna, el movimiento de un péndulo y el latido del corazón. Actualmente, la unidad de tiempo internacional, el segundo, se define midiendo la transición electrónica frecuencia de los átomos de cesio. El tiempo también tiene una importancia social significativa, ya que tiene un valor económico («el tiempo es dinero«), así como un valor personal, debido a la conciencia del tiempo limitado en cada día y en la la duración de la vida humana.

Hay muchos sistemas para determinar qué hora es, entre ellos el Sistema de Posicionamiento Global, otros sistemas de satélites, el Tiempo Universal Coordinado y el tiempo solar medio. En general, los números obtenidos a partir de los distintos sistemas de tiempo difieren entre sí.

Desde el punto de vista de la teoría de sistemas propuesta por Niklas Luhmann, ​ el tiempo tiene una formación social, de esta manera el tiempo está situado desde la perspectiva del observador. De esta suerte, se trata de una operación que se realiza de manera concreta a través de la distinción entre antes y después. El primero es el pasado que no existe, y que sin embargo, se puede recordar y en el que se puede ubicar la causalidad, por otro lado el futuro que es donde suceden los efectos. En el punto ciego entre ambos se encuentra la actualidad del presente, en el que se encuentra la sincronización de la simultaneidad. Por lo tanto el mundo se percibe desde la simultaneidad (presente) y la no simultaneidad (pasado-futuro). Como nos explica Luhmann, «se pueden construir tiempos específicos para localizar, por ejemplo, las causas en el pasado; los efectos, en el futuro. Pero todo esto es solo posible en la observación que se realiza solo en un presente actual, y mediante aplicación de procesos de atribución».

La cronología (histórica, geológica, etc.) permite datar los momentos en los que ocurren determinados hechos (lapsos relativamente breves) o procesos (lapsos de duración mayor). En una línea de tiempo se puede representar gráficamente los momentos históricos en puntos y los procesos en segmentos.

Las formas e instrumentos para medir el tiempo son de uso muy antiguo, y todas ellas se basan en la medición del movimiento, del cambio material de un objeto a través del tiempo, que es lo que puede medirse. En un principio, se comenzaron a medir los movimientos de los astros, especialmente el movimiento aparente del Sol, dando lugar al tiempo solar aparente. El desarrollo de la astronomía hizo que, de manera paulatina, se fueron creando diversos instrumentos, tales como los relojes de sol, las clepsidras o los relojes de arena y los cronómetros. Posteriormente, la determinación de la medida del tiempo se fue perfeccionando hasta llegar al reloj atómico. Todos los relojes modernos desde la invención del reloj mecánico han sido construidos con el mismo principio del «tic tic tic». El reloj atómico está calibrado para contar 9 192 631 770 vibraciones del átomo de cesio para luego hacer un «tic».

¡Esto no es todo amig@!

Soy Yolanda, psicóloga clínica sanitaria. Tengo mi propia consulta y me gustaría ayudarte si tienes problemas y preocupaciones que no te dejan dormir.

Hoy he querido hablaros en este post sobre el tiempo. Ese que pasa y no vuelve, también vivir, buscar y disfrutar de los buenos momentos del día a día, ya sabéis «tiempo que pasa ya no vuelve»

Puedes contactar conmigo a través de:

Mi web: psicologiasinlimitacionesonline.com >>>

Llámame o whassappeame: +34 679 26 57 85 >>>

Enviame un correo electrónico: psicologiasinlimitaciones@hotmail.com >>>

¿Hablamos?

Deja un comentario